Approximating Nash Equilibria in Bimatrix Games

Yiannis Tselekounis

June 23, 2011

Yiannis Tselekounis ()

Approximating Nash Equilibria in Bimatrix G

June 23, 2011 1 / 18

Notation

- For an integer n, $[n] = \{1, 2, ..., n\}.$
- \mathbf{x} : vector, x_i : the components of \mathbf{x} , \mathbf{x}^T : the transpose of \mathbf{x} .
- \mathbb{P}^n : the set of all probability vectors in n dimensions, i.e. $\mathbb{P}^n \equiv \{\mathbf{x} \in \mathbb{R}^n : \sum_{i=1}^n x_i = 1, x_i \ge 0 \text{ for all } i \in [n]\}.$
- $\mathbb{R}_{[0:1]}^{n \times m}$: the set of all $n \times m$ matrices with real entries between 0 and 1, i.e. $\mathbb{R}_{[0:1]}^{n \times m} \equiv \{A \in \mathbb{R}_{[0:1]}^{n \times m} : 0 \le \alpha_{i,j} \le 1 \text{ for all } i \in [n], j \in [m]\}.$

Bimatrix Games

- 2-player games in which the set of strategies are S_1 , S_2 respectively, $|S_1| = n$, $|S_2| = m$.
- Such games are denoted by $\Gamma = \langle A, B \rangle$ where $A, B \in \mathbb{R}^{n \times m}$.
- n rows of *A*, *B* represent the pure strategies of row player, m columns represent the pure strategies of the column player.
- For the strategies *i* (row) ,*j* (column), the row player gets payoff *a*_{*ij*} and the colum player gets *b*_{*ij*}.
- A mixed strategy for *i* ∈ *N* is a probability distribution on the set of her pure strategies *S_i* (**x** ∈ ℙⁿ for the row player, **y** ∈ ℙ^m for the column player).
- For mixed strategies **x** (row), **y** (column), the expected payoffs are $\mathbf{x}^T A \mathbf{y}, \mathbf{x}^T B \mathbf{y}$ respectively.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

Nash equilibria

Definition 1 (Nash Equilibrium)

(x̃, ỹ) is a Nash equilibrium for Γ = ⟨A, B⟩ if
x^TAỹ ≤ x̃^TAỹ, ∀x ∈ Pⁿ and
x̃^TBy ≤ x̃^TBỹ, ∀y ∈ P^m.

Definition 2 (*c*-Nash Equilibrium)

(**x̂**, **ŷ**) is an ε-Nash equilibrium for Γ = ⟨A, B⟩ if **x**^TA**ŷ** ≤ **x̂**^TA**ŷ** + ε, ∀**x** ∈ ℙⁿ and **x̂**^TB**y** ≤ **x̂**^TB**ŷ** + ε, ∀**y** ∈ ℙ^m.

Definition 3 (
$$\epsilon$$
-well supported Nash Equilibrium)
($\mathbf{x}^*, \mathbf{y}^*$) is an ϵ -Nash equilibrium for $\Gamma = \langle A, B \rangle$ if
1 $\forall i : x_i^* > 0 \Rightarrow e_j^T A \mathbf{y}^* \le e_i^T A \mathbf{y}^* + \epsilon, \forall j$
2 $\forall i : y_i^* > 0 \Rightarrow \mathbf{x}^{*T} B e_j \le \mathbf{x}^{*T} B e_i + \epsilon, \forall j$

Positively normalized bimatrix games

- Consider the game Γ = (A, B) and let c, d be two positive real constants.
 - Suppose that (x̃, ỹ) is a Nash equilibrium for Γ and (x̂, ŷ) is an ε-Nash equilibrium for Γ.
 - Consider the game Γ' = ⟨cA, dB⟩. Then Γ, Γ' have the same set of Nash Equilibria and any ε-Nash equilibrium for Γ is a λε-Nash equilibrium for Γ' (λ = max{c, d}).

2 Let C, $D \in \mathbb{R}^{m \times n}$ such that

- ▶ for all (columns) $j \in [m]$, $c_{i,j} = c_j \in \mathbb{R}$ for all $i \in [n]$.
- ▶ for all (rows) $i \in [m]$, $d_{i,j} = d_i \in \mathbb{R}$ for all $j \in [m]$.

If we consider the game $\Gamma'' = \langle A + C, B + D \rangle$, then Γ , Γ'' are equivalent as regards their sets of Nash and ϵ -Nash equilibria.

1, 2 allows us to focus only on bimatrix games where the payoffs are between 0 and 1, i.e. on games A, B where A, $B \in \mathbb{R}_{[0:1]}^{m \times n}$ (positively normalized bimatrix games).

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Theorem 1

For any Nash equilibrium $(\tilde{\mathbf{x}}, \tilde{\mathbf{y}})$ of a positively normalized $n \times n$ bimatrix game and for every $\epsilon > 0$, there exists, for every $k \ge \frac{12 \ln n}{\epsilon^2}$, a pair of k-uniform strategies $\hat{\mathbf{x}}, \hat{\mathbf{y}}$ such that $(\hat{\mathbf{x}}, \hat{\mathbf{y}})$ is an ϵ -Nash equilibrium.

Theorem 2

The problem of computing a $\frac{1}{n^{\Theta(1)}}$ -Nash equilibrium of a positive normalized $n \times n$ bimatrix game is PPAD-complete.

First Approximations

Lemma 1 (A $\frac{3}{4}$ -Nash equilibrium)

Consider any positively normalized $n \times m$ bimatrix game $\Gamma = \langle A, B \rangle$ and let $\alpha_{i_1,j_1} = \max_{i,j} \alpha_{i,j}$ and $b_{i_2,j_2} = \max_{i,j} b_{i,j}$. Then the pair of strategies $(\hat{\mathbf{x}}, \hat{\mathbf{y}})$ where $\hat{x}_{i_1} = \hat{x}_{i_2} = \hat{y}_{j_1} = \hat{y}_{j_2} = \frac{1}{2}$ is a $\frac{3}{4}$ -Nash equilibrium for Γ .

Theorem 3 (A Parameterized Approximation)

Consider a positively normalized $n \times m$ bimatrix game $\Gamma = \langle A, B \rangle$. Let λ_1^* (λ_2^*) be the minimum, among all Nash equilibria of Γ , expected payoff for the row (column) player and let $\lambda = \min\{\lambda_1^*, \lambda_2^*\}$. Then, for any $0 < \epsilon < 1$, there exists a $\frac{2+\lambda+\epsilon}{4}$ -Nash equilibrium that can be computed in time polynomial in $\frac{1}{\epsilon}$, n and m.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

A Simple Algorithm for $\frac{1}{2}$ -Nash equilibrium

- Pick an arbitrary row for the row player, say row i.
- 2 Let $j = arg \max_j C_{ij}$.
- 3 Let $k = \arg \max_k R_{kj}$.
- The equilibrium is $\hat{\mathbf{x}} = \frac{1}{2}e_i + \frac{1}{2}e_k$, $\hat{\mathbf{y}} = e_j$.

Theorem 4

The strategy pair $(\hat{\mathbf{x}}, \hat{\mathbf{y}})$ is a $\frac{1}{2}$ -Nash equilibrium.

Definition 4

A mapping $f : [n] \rightarrow [n]$ is a best response mapping for the column player iff, for every $i \in [n]$, $C_{if(i)} = \max_j C_{ij}$.

Definition 5 (Decorrelation Transformation)

The decorrelated game (R^f, C^f) corresponding to the best response mapping f is defined as follows $\forall i, j \in [n]$: $R_{ij}^f = R_{if(j)}, \quad C_{ij}^f = C_{if(j)}.$

白人《御人《臣人《臣人》臣

Decorrelated Games (Cont.)

Lemma 2

In the game (R^f, C^f) , for all sets $S \subseteq [n]$, the strategies of the column player in S are $\frac{|S|-1}{|S|}$ -well supported against the strategy \mathbf{x}^* of the row player, where \mathbf{x}^* is defined in terms of the set $S' = \{i \in S | C_{ii}^f = 0\}$ as follows

- if $S' \neq \emptyset$, then \mathbf{x}^* is uniform over the set S'
- if $S'=\emptyset$, then

$$\mathbf{x}_{i}^{*} = \begin{cases} \frac{1}{Z} \frac{1}{C_{ii}^{f}}, & \text{if } i \in S \\ 0, & \text{otherwise} \end{cases}$$

where $Z = \sum_{i \in S} \frac{1}{C_{ii}^f}$ is a normalizing constant.

Lemma 3 (Player Decorrelation)

In the game (R^f, C^f) , if there exists a set $S \subseteq [n]$ and a mixed strategy $\mathbf{y} \in \Delta(S)$ for the column player such that the strategies in S are $\frac{|S|-1}{|S|}$ -well supported for the row player against the distribution \mathbf{y} , then there exists a strategy $\mathbf{x} \in \Delta(S)$ for the row player so that the pair (\mathbf{x}, \mathbf{y}) is an $\frac{|S|-1}{|S|}$ -well supported Nash equilibrium.

Decorrelated Games (Cont.)

Lemma 4

For all $S \subseteq [n]$, if the pair $(\mathbf{x}^*, \mathbf{y}^*)$, where \mathbf{x}^* is defined as in the statement of Lemma 2 and \mathbf{y}^* is the uniform distribution over S, constitutes an $\frac{|S|-1}{|S|}$ -well supported Nash equilibrium for the game (R^f, C^f) , then the pair of distributions $(\mathbf{x}^*, \mathbf{y}')$ is an $\frac{|S|-1}{|S|}$ -well supported Nash equilibrium for the game (R, C), where \mathbf{y}' is the distribution defined as follows

$$\mathbf{y}'(i) = \sum_{j \in S} \mathbf{y}^*(j) X_{f(j)=i}, \forall i \in [n],$$

where $X_{f(j)=i}$ is the indicator function of the condition "f(j) = i".

ロト (得) (ヨ) (ヨ) (ヨ)

We define a mapping from a general 2-player game to a win-lose game so that well supported equilibria of the win-lose game can be mapped to well supported equilibria of the original game.

$$\mathsf{round}(A)_{ij} = \left\{ egin{array}{cc} 1, & \textit{if } A_{ij} \geq rac{1}{2} \\ 0, & \textit{if } A_{ij} < rac{1}{2} \end{array}
ight.$$

Lemma 5

If (\mathbf{x}, \mathbf{y}) is an ϵ -well supported Nash equilibrium of the game (round(R), round(C)), then (\mathbf{x}, \mathbf{y}) is a $\frac{1+\epsilon}{2}$ -well supported Nash equilibrium of the game (R, C).

Algorithm for well supported equilibria

ALG-WS

- Map game (R, C) to the win-lose game (round(R), round(C)).
- Map game (round(R), round(C)) to the game (round(R)^f, round(C)^f), where f is any best response mapping for the column player.
- Sind a subset S ⊆ [n] and a strategy y ∈ Δ(S) for the column player such that all the strategies in S are ^{|S|-1}/_{|S|}-well supported for the row player in (round(R)^f, round(C)^f) against the strategy y for the column player.
- By a successive application of lemmas 3, 4 and 5, get an $\frac{1}{2} + \frac{1}{2} \frac{|S|-1}{|S|} = 1 \frac{1}{2|S|}$ well supported Nash equilibrium of the original game.

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

A non-trivial step

Step 3

"Given a 0-1 matrix $round(R)^{f}$, find a subset of the columns $S \subseteq [n]$ and a distribution $\mathbf{y} \in \Delta(S)$, so that all rows in S are $\frac{|S|-1}{|S|}$ -well supported against the distribution \mathbf{y} over the columns."

Conjecture 1

There are integers κ and λ such that every digraph either has a cycle of length at most κ or an undominated set of λ vertices.

Theorem 5

If Conjecture 1 is true for some values of κ and λ , then Algorithm ALG-WS returns in polynomial time (e.g. by exhaustive search) a $\max\{1-\frac{1}{2\kappa}, 1-\frac{1}{2\lambda}\}$ -well-supported Nash equilibrium which has support of size $\max\{\kappa, \lambda\}$.

- ∢ ≣ ▶

▶ < □ > < □ >

Theorem 6

For arbitrary win lose bimatrix game A, B, there is a polynomial time constructible profile that is a 0.5-well supported Nash equilibrium of the game.

Corollary 1

For any [0,1]-bimatrix game R, C, there is a 0.75-well supported Nash equilibrium that can be computed in polynomial time.

[DMP]

An approximation ratio of $0.38 + \epsilon$, $\forall \epsilon > 0$, based on the following

- If the values (u, v) of a Nash equilibrium to the two players were known, then we would be able to find a max{u, v} -approximate Nash equilibrium by solving a set of linear inequalities.
- Provide the support size O(¹/_{ε²}) which approximates within ε the true values of that Nash equilibrium.

[BBM]

An approximation ratio of 0.36 based on solving a zero-sum game.

くロト く得ト くほト くほト 二日

Thank you!

Yiannis Tselekounis ()

Approximating Nash Equilibria in Bimatrix G

June 23, 2011

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

18 / 18

3